Skip to main content

Imagenet Image Recognition Using Tensorflow, Keras

Imagenet Dataset and Image Recognition

 

import tensorflow as tf
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout
from tensorflow.keras import layers
from keras.utils import to_categorical
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
 
from keras.datasets import cifar10
(x_train, y_train),(x_test, y_test) = cifar10.load_data()
 
plt.imshow(x_train[0])
 
y_train_one_hot = to_categorical(y_train)
y_test_one_hot = to_categorical(y_test)
x_train = x_train/255
x_test = x_test/255
 
model = Sequential()
model.add(Conv2D(32,(5,5),activation='relu', input_shape=(32,32,3)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(32,(5,5),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(1000,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(500,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(250,activation='relu'))
model.add(Dense(10,activation='softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
 
hist = model.fit(x_train, y_train_one_hot,
                 batch_size=256,
                 epochs=10,
                 validation_split=0.2 )
 
model.evaluate(x_test, y_test_one_hot)[1]
 
plt.plot(hist.history['accuracy'])
plt.plot(hist.history['val_accuracy'])
plt.title('Model Accuracy')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend(['Train''Val'],loc='upper right')
plt.show()
 
plt.plot(hist.history['loss'])
plt.plot(hist.history['val_loss'])
plt.title('Model Loss')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.legend(['Train''Val'],loc='upper right')
plt.show()
 
Imagenet Colab Link: 
 
 
 
 
 
 
 
 

 

Comments

Popular posts from this blog

All India - Kedarnath, Kasi Viswanath, Badrinath, Jagnath, Dhuvaraga, Amristar, Madurai, Kancheepuram, Tirumalai,

Mannar Sami Temple

Our Favourite Cloud Platform - HEROKU , a SalesForce Company

 Table of Contents 1. Desktop Softwares 1.1. Git Download 1.2 Heroku CLI Download 2. Dayam on Heroku 3. Arcot Kathir on Heroku 4. Arcot Yellow Pages on Heroku 1. Desktop Softwares 1.1. Git Command Line Desktop application 1.2  Heroku Cloud command line Desktop   2. Dayam My full fledged HTML5/JavaScript/CSS3/PHP Web application as SaaS. Dayam Software as a Service      3. Simple Web page Hosting Arcot Kathir Technologies    4.  Facebook Application - Social Touch - Arcot Yellow Pages Arcot Yellow Pages for Business   My Full fledged, Social application with Facebook Friends Sharing Feature.